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over a dense three-dimensional grid in the direct 
space. 

To perform this task directly in the reciprocal space, 
two procedures have been proposed in this paper. 
The first is based on calculations of the DMSD 
using triplet invariants (6), where the arguments of 
goniometric functions have to be calculated by solv- 
ing the set of linear equations (5). The second is 
based on minimizing the right-hand side of (7) [or 
(8) for centrosymmetrical structures]. It has been 
shown that the second procedure is preferable 
because of its simplicity. 

This work was supported by ZWO and grant no. 
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Abstract 

A formulation of the phase problem in terms of the 
phases of all the experimentally available structure 
factors is presented, based on exact algebraic relations 
between Fourier coefficients, which express atomicity. 
A criterion is constructed whose minimum is attained 
by the true phases. All the observed data are used to 
minimize the sum of the squared residuals of an 
overdetermined system of equations, thereby 
minimizing the influence of errors upon the estimated 
phases. The approach brings together the theoretical 
power of matrix methods and the stability of over- 
determined equations. The hypothesis of positivity of 
the electron density is not used. 

Notation 

N number of atoms in the unit cell 
za number of electrons of the ath atom 
s. scattering length of the ath nucleus 

iz/(; ~¢ z 2 (X-ray case) a 
1 

n, = N s 2 (neutron case) a 
1 

V volume of the unit cell 
k, h, hp reciprocal vectors 
ra vector of coordinates of the ath atom 

N 
E(h) = ~ na exp (21rib. ra) normalized structure 

a =, factor 
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E(h)* complex conjugate of E(h) 
~ab Kronecker delta 
® convolution 
F, F -1 direct and inverse Fourier transforms, respec- 

tively 
Mslts, s = 1 , . . . ,  g transformation matrix Ms and 

translation ts corresponding to 
the sth symmetry operation 

Introduction 

The property of positivity of the electron density has 
played such an important role in the mathematical 
foundations of direct methods that it is now generally 
accepted that non-negativity is sufficient a priori 
information to determine a unique atomic structure. 
The practical success of these methods in producing 
atomic maps, i.e. maps that can be interpreted in 
terms of atomic distributions, has confirmed this point 
of view. 

On the other hand, maximum-entropy techniques 
have shown that positive maps that satisfy a large 
number of experimental data, but which are not 
atomic, can routinely be obtained (Navaza, 1986; 
Decarreau, Hilhorst, Lemarrchal & Navaza, 1992). 
Since these techniques provide the statistically most 
unbiased estimates possible with the given informa- 
tion, we conclude that atomicity cannot be recovered 
if only information of positivity of the electron density 
and knowledge of the moduli of a subset of its Fourier 
coefficients are used. In other words, positivity is not 
a sufficient condition; we will also see that neither is 
it a necessary condition. 
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696 THE ROLE OF ATOMICITY IN DIRECT METHODS 

Atomicity is assumed directly or indirectly in cur- 
rent direct methods. For example, approximations of 
Sayre's equation (Sayre, 1952) are found in most 
formulations of the phase problem, although the con- 
ditions for its applicability are seldom fulfilled in 
practice: the hypothesis of equal atoms is often 
seriously violated and the number of normalized 
structure factors used in the summations is extremely 
small compared to that required theoretically. 

Sayre's equation is not the only relation expressing 
atomicity. This property was in fact explicitly intro~ 
duced by Goedkoop (1950) when showing that the 
determinants of Karle-Hauptman matrices of order 
greater than N, built with normalized structure fac- 
tors, should vanish. The result is an extension of the 
theory of inequalities and, as such, the property is 
recovered only if a great number of determinants (in 
theory an infinite number) are considered (Karle & 
Hauptman, 1950). Later, it was shown that knowledge 
of the elements of a matrix of order N + 3 is sufficient 
in principle to determine the atomic positions 
(Navaza & Silva, 1979; INS] hereafter). Unfortu- 
nately, matrix methods are so sensitive to errors that 
their potential merit is lost in most practical situations. 

However, we found that atomicity may be 
recovered from Goedkoop's result, using a single 
matrix of order about the number of independent 
atoms in the crystal. The analysis is based on the 
theory developed in [NS]. We will briefly restate some 
results of this theory and show how the mathematical 
relations that express atomicity are alone sufficient 
to solve the phase problem. All the available experi- 
mental information is incorporated in a single matrix 
of rather small order, explicitly depending on the 
unknown phases, which is set up so as to express 
atomicity instead of merely positivity. 

The present formulation is closely related to the 
matrix approach of direct methods, although the main 
shortcomings of the latter are avoided. Surprisingly, 
the assumption of positivity of the electron density 
is not required, which makes the theory still more 
attractive since matrix methods often conflict with 
the assumption of positivity due to errors. Methods 
of solution of the proposed equations will be dis- 
cussed, as well as the connection with other pro- 
cedures of direct methods. 

The mathematical foundations 

In the first part of this section, we assume that the 
normalized structure factors are known for all vectors 
in reciprocal space; they will be interpreted as scalar 
products between particular elements of an N- 
dimensional complex vector space S, with orthonor- 
mal basis {~,,, a = 1 , . . . ,  N} 

(e,,]eb) = 8~b. (1) 

To each reciprocal vector h, we associate in S the 

pair of vectors 

N 

re(h) = Y~ exp ( -2 r r ih .  r,,)~,,, 
o=x (2) 

N 

~(h) = Y~ na exp ( -2r r ih .  ra )~ .  
a = l  

It follows that the Hermitian scalar product 

( * ( k ) l ¢ ( h ) )  = E ( k -  h) (3) 

is a normalized structure factor. Since S has 
dimension N, given a set BM --{hp, p = 1 , . . . ,  M} of 
M > N reciprocal vectors, we can always construct 
a nontrivial linear combination 

M 

flpV(hp) =0, (4) 
p = l  

with coefficients fl normalized to 

M 

~, Iflpl 2= 1. (5) 
p = l  

Projecting (4) onto ~(k) and using (3), we get 

M 

Y. E(k-hp)flp=O, (6) 
p---1 

for every vector k in reciprocal space. Taking the 
squared moduli and summing over k, a system of 
K -> M equations like (6) is equivalent to 

M M 

~. ~ fl~q Qqpflp-~O, ( 7 )  
q = l  p = l  

where 

Qqp=(1/K) Y. E(hq-k)E(k-hp). (8) 
k 

Q is thus a positive semidefinite Hermitian matrix. 
According to some general results of linear algebra, 
its rank is less than or equal to N or, equivalently, 
it has [ M - r a n k ( Q ) ]  zero eigenvalues. The com- 

ponents  of any of their associated eigenvectors may 
be taken as the coefficients fl entering in the above 
equations. The number of independent sets of 
coefficients/3 equals the multiplicity of the zero eigen- 
value of Q. 

If the sum over k runs over the whole of the 
reciprocal space (we will denote this limit by K -+ oo), 
the above equations take simple forms, in particular 
when written in direct space. Equation (6) is a convo- 
lution; its Fourier transform gives 

F-~(E®fl)=F-~(E)F-l(fl)=p(r)y(r)=O, (9) 

for every r in the unit cell. An important result follows: 
p may take nonzero values only at the points where 
7 vanishes; therefore, the atomic positions are zeros 
of 7. Expression (8) also has a meaning in the limit 
as K -+ oo. It may be calculated as the Fourier trans- 
form of p2. However, since p is a distribution, its 
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square is not correctly defined (Schwartz, 1966); as 
in the case of the Sayre-Hughes equation, p2/K tends 
to a new distribution, denoted psq, with Fourier 
coefficients Esq. Accordingly, Q is a Karle-Hauptman 
matrix with elements 

Qqp = ESq(hq -hp ) ,  (10) 

and the quadratic expression (7) becomes 

pro(r) 3,(r) 2 dr. (11) 

We have so far presented the implications of ato- 
micity. We will now investigate the converse problem 
and see which properties of Q imply atomicity. In 
the one-dimensional case we can demonstrate the 
following proposition: if for a conveniently chosen 
set BM the rank of Q is N, then the E values are the 
Fourier coefficients of a distribution consisting of N 
point atoms. In other words, we have necessary and 
sufficient conditions for atomicity. Here B~ may be 
any set of M = N +  1 consecutive Miller indices, for 
example BM -= {hp = p - 1, p = 1 , . . . ,  M}. Therefore, 
there is a unique eigenvector, which determines 3' up 
to a phase factor. But 3' is a polynomial of order N 
in the complex variable z = exp (-2zrix), 

N + I  N 

3'(x)= E tip exp(-2'rrix) p- l= ~., flq+, zq = PN(z), 
p = l  q = 0  

(12) 

so that there are at most N values of x in [0, 1] (N  
zeros of PN in the complex plane) such that 3"(x) = O. 
The number of such points cannot be less than N, 
and also p cannot vanish at them. Otherwise, (9) 
would imply that F-~(E) is a sum of less than N 
distributions centered at the zeros of 3'. Then, repeat- 
ing the above construction of Q [(1) to (10)], we 
would have r a n k ( Q ) < N ,  contradicting our 
hypothesis. 

The assumption that the E values are known for 
all vectors in reciprocal space, as required by (9), is 
not really needed. Indeed, for given /3 values, (6) 
may be used to extrapolate data by a sequential 
process: E (k) is given by a linear combination of the 
N preceding E values (Collins, 1978). The feasibility 
of the extrapolation process, together with the above 
proposition, implies that the atomic structure is 
uniquely determined by a limited number of E values. 

In three dimensions, we see no rigorous way of 
demonstrating the above proposition without 
introducing assumptions concerning the distribution 
of atoms within the unit cell. However, the following 
simple argument indicates the way atomicity 
manifests itself. Let us denote by 3'~n), n =  
1 , . . . ,  M - N, the Fourier transforms of the different 
eigenvectors corresponding to the zero eigenvalues 
of the matrix Q. Each equation 3'~n)(r)= 0 defines a 
surface in the variables r = (x, y, z), so that (at least) 
three such (independent) surfaces intersect in a finite 

number of points. The construction is similar to the 
one proposed in INS] to determine the atomic posi- 
tions using a small number of E values. Numerical 
experiments have shown that the number of intersec- 
tions is N for sets BM involving small Miller indexes, 
but no conclusions can be drawn with respect to this 
number within this reasoning. 

The important point here is that M "- N. Otherwise, 
the above proposition reduces to a trivial result. 
Indeed, it is well known that the eigenvalues of the 
Karle-Hauptman matrix of infinite order are essen- 
tially the values of p (psq in our case). Accordingly, 
a necessary and sufficient condition for p to be a 
distribution of N point atoms is that the rank of this 
matrix be N. Since this result is based on the unitarity 
of the Fourier transformation, it also holds for the 
discrete case. 

The smallest number of E values needed to build 
a matrix Q is generally obtained when the set of k 
vectors used in (8) coincides with the set BM. In this 
case Q is proportional to the square of a traditional 
Karle-Hauptman matrix of order M =  K. In three 
dimensions the resolution of a sphere containing M 
reciprocal vectors is (4"n'V/3M)l/3~. For M = N and 
a ratio V / N "  15/~3, which corresponds to a typical 
small structure (counting only non-hydrogen atoms), 
this gives resolution ---4/~,. Therefore, the minimal 
resolution necessary to build Q is about 2/~. For 
such structures, experimental data extend far beyond 
this limit. 

Although we have, for simplicity, assumed P1 sym- 
metry, the extension of the preceding discussion to 
any space group is very simple. N would then denote 
the number of atoms in the asymmetric unit and the 
Karle-Hauptman matrices would become Goedkoop 
matrices. Starting from definition (1) and 

N g 

~(h)= E E exp [ -27r ih .  (Msra+ts)]~a, 

a=l ~=1 (13) 
N g 

i f(h)= ~ n~ Y. e x p [ - 2 0 r i h . ( M s r ~ + t s ) ] ~ ,  
a = l  s = l  

which correspond to definitions (2), all the pertinent 
formulas may be easily derived. 

The phase determination 

In practical applications the crystallographer is con- 
fronted with the problems of errors, lack of phases 
and limited resolution. The results of the preceding 
section provide the basis for a method of phase 
determination that overcomes these problems, if a 
reasonable amount of data is available. The method 
consists in driving the rank of the M x M matrix Q 
to the value N. This may be formulated as an optimiz- 
ation problem where the sum of the M -  N smallest 
eigenvalues of Q are minimized with respect to the 
unknown phases. Indeed, since Q is by construction 
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non-negative for any values of the phases, rank(Q) = 
N is strictly equivalent to the vanishing of the sum 
of M - N eigenvalues of Q. Assuming the eigenvalues 
e ~") are sorted in ascending order, this criterion takes 
the form 

~,,). ~,o . ( 1 4 )  R =  Z e~")= ~, ,Sq Qqpflp , 
n = l  n = l  p = l  

it measures the quadratic misfit of the set of equations 
(6) used in the construction of Q. The method may 
be regarded as a least-squares solution of (6) under 
the constraints (5). It is almost an atom-parameter 
refinement reformulated in terms of phases. 

A typical minimization procedure involves the 
calculation of the M - N  smallest eigenvalues e (") 
and eigenvectors/3 (") of Q, a somewhat shorter prob- 
lem than a matrix diagonalization. At each step, the 
solution of this limited eigenvalue problem allows 
one to calculate the criterion R and its gradient 

( - ) ,  ( - )  ag/a~= E Y ~q aQ~/a~ , ( 15 )  
n = l  p = l  

from which new values of the phases ~p are determined 
by the optimization algorithm. Note that the eigenvec- 
tors are not differentiated with respect to the phases 
(cf. first-order perturbation theory in any textbook of 
quantum mechanics). Unfortunately, continuous 
phase changes are not always possible because of 
space-group restrictions. In particular, the com- 
ponents of the gradient vanish for the symmetry- 
restricted phases. 

Alternative optimization procedures may be 
envisaged. For example, (6) may be used to improve 
the values of the phases, from which new coefficients 
/3 are obtained by solving an eigenvalue problem. 
The first step is achieved by a technique of successive 
substitutions, which provides phase changes in all 
cases. Since BM is defined up to a translation, we can 
always assume hi = 0 and/31 ~ 0, and write (6) in the 
form 

M M 

E ( k ) =  E E ( k - h p ) ( - f l p / f l l ) =  ~, a~,E(k-hp). 
p =2 p =2 

(16) 

The % are then used to set up an iterative algorithm 
of the simple form 

~0k0+l)=phase[ ~ a p E ( k - h  e) exp(i~o°2hp)], (17) 
p = 2  

where ~o U) denote the j th  iterate of the phases. After 
some iterations, new ap are calculated and a new 
cycle is started. 

Although we have considered the unknown phases 
as the only variables of the optimization problem, 
complex Es may be incorporated as variables too. In 
this case we are simultaneously solving the problem 
of data extrapolation. In particular, when all the 

unknown Es are included, Q is given by the Karle- 
Hauptman matrix corresponding to Esq. Despite the 
fact that the number of variables is greatly increased, 
most computations are now performed by FFT tech- 
niques (with the exception of the limited eigenvalue 
problem). 

Programing all this is not trivial, but we have realis- 
tic hopes of constructing algorithms useful even for 
macromolecules. Some experiments have still to be 
performed to assess the influence of resolution, errors 
and choice of BM upon the estimated phases. For the 
moment, we have checked that function (14) gives a 
minimum for the true phases, as compared either with 
random ones or with all phases set to zero. The tests 
were performed with experimental data correspond- 
ing to several structures, N ranging from 25 to 150. 
The development of suitable optimization techniques 
and the corresponding programs, in collaboration 
with J. C. Gilbert and C. Lemar6chal at INRIA, is 
part of our current research. 

D i s c u s s i o n  

The criterion (14) and Sayre's equation are, for the 
moment, the only tractable exact functions of the 
phases that exist in crystallography. The latter 
assumes equal atoms (not necessarily positive) and 
needs all data, at atomic resolutions, to be satisfied. 
The former assumes point-atom structure factors, 
involving significant errors, but forcing the data to 
satisfy ove, rdetermined relations. 

Probabilistic reasoning has been bypassed entirely. 
Nevertheless, a link with other formulations of the 
phase problem, including probabilistic ones, is pro- 
vided by (16). It was the starting point of the analysis 
presented in INS], where the equivalence with the 
regression equation of the maximum determinant 
method of Tsoucaris (1970) and the generalized 
tangent formula of Karle (1971) was shown. 
Moreover, using a first-order expansion of the t~p in 
terms of the normalized structure factors, (16) leads 
to a partial sum of Sayre's equation. Navaza & Silva 
(1979) emphasized the fact that, in their approach, 
the hypothesis of equal atoms was not necessary. We 
are now in a position to affirm that positivity is not 
necessary either. In our opinion, positivity is not an 
essential ingredient of direct methods, although it 
certainly strengthens some relations between struc- 
ture factors. In summary, unexpected analogies 
appear at the level of relations to be satisfied rather 
than functions to be optimized. 

However, a profound difference between the alge- 
braic and the probabilistic approaches remains. This 
is illustrated, for example, by the fact that (16) mini- 
mizes the Karle-Hauptman determinant correspond- 
ing to the matrix in (10), whereas most probabilistic 
formulations would tend to maximize it. In terms of 
maps, Fig. 1 shows the catastrophic effect of estima- 
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( a )  

~X~N 

(c) 

Fig. 1. (a) Projection of a 2/~, resolution Fourier map of prosta- 
glandin PGE2 (De Tiua, Langs, Edmonds & Duax, 1980). (b) 
Projection of a Fourier map computed with all the structure 
factors entering in an N x N Karle-Hauptman matrix (N = 25, 
64 independent reflections, true phases). (c) Same as (b), but 
with phases that maximize -S p(r) In [p(r)] dr. 

ting phases by probabilistic methods: the phases 
entering a matrix of order N were moved from their 
true values so as to maximize the Boltzmann entropy. 
This produced a rise of about 20 units in the logarithm 
of the corresponding determinant. 

But perhaps the most important property made 
clear by the present analysis is that atomicity implies 
that each E can be expressed as a linear combination 
of a finite number of other Es (a sort of 'bootstrap') .  
Such relations are found in most of the existing pro- 
grams for direct determination of structures. There- 
fore, by analogy with the equations derived in this 
paper, they may as well work on structures consisting 
of 'negative' atoms. This is effectively what happened 
when we applied MULTAN80 (Main et al., 1980) to 
the experimental neutron data of barium nitroprus- 
side trihydrate, Ba[Fe(CN)sNO].3H20,  space group 
Pbcm, a=7 .620 ,  b=19.394,  c=8 .631 /~ ,  Z = 4  
(Navaza, Schweiss, Alzari, Chevrier, Heger & Guida, 
1989), treated as X-ray data. Incidentally, the pro- 
gram did not succeed with the true X-ray data. We 
also constructed the fictitious structure shown in Fig. 
2, whose coordinates correspond to non-hydrogen 
atoms of diethylene glycol ditosylate C18H220752, 
space group C2/c, a=23.772,  b=5.472,  c =  
15.284~,  /3 =89.61 ° (Ferchaux, Villain & Navaza, 
1990). The first set of phases showed the complete 
structure. To pick up the negative atoms we just took 
the absolute value of the map at the input of the 
peak-search subroutine. Other examples have already 
been reported in the literature (Sikka, 1969; Frey, 
Lehmann, Koetzle & Hamilton, 1973), with 
specification of the type of data (neutron radiation). 
We have no way to decide whether these results are 

-8 

13 

-8 -8 

18 

12 

-8 -B 

18 

13 

Fig. 2. Fictitious structure, with correct positions and arbitrary 
scatterers. The numbers in the drawing correspond to the atomic 
scattering factors used in the calculation of the diffraction 
intensities. 
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fortuitous or to be expected; obviously, they confirm 
the theory put forward in the present article. They 
suggest that the final strategy to optimize criterion 
(14) will certainly take advantage of the established 
algorithms used in current direct methods. 

The authors are grateful to C. Lemarrchal, J. C. 
Gilbert and Professor E. E. Castellano for very valu- 
able suggestions and criticisms. 
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Abstract 

Resolution of better than 2/~ has been obtained in 
many crystals by high-resolution electron microscopy. 
Although this resolution is sufficient to resolve inter- 
atomic spacings, structures are traditionally inter- 
preted by comparing experimental images with con- 
trast calculations. A drawback of this method is that 
images are 2D projections in which information is 
invariably obscured by overlap of atoms. 3D electron 
crystallography, developed by biophysicists to study 
proteins, has been used to investigate the crystal struc- 
ture of staurolite. Amplitudes and phases of structure 
factors are obtained experimentally from high-reso- 
lution images (JEOL ARM 1000 at the National 

Center for Electron Microscopy at LBL), taken in 
different directions from thin regions where dynamic 
scattering is minimal. From images in five orientations 
(containing 59 independent reflections to a resolution 
of 1.38/~), a 3D electron potential map is constructed 
which resolves clearly all cations (A1, Si, Fe, including 
those with partial occupancy) and all O atoms. This 
method has great potential in crystal structure 
determinations of small domains in heterogeneous 
crystals which are inaccessible to X-ray analysis. It 
is estimated that 3D structure determinations should 
be possible on regions only about ten unit cells wide 
and should resolve not only atom positions but also 
site occupancies. The method is also applicable to 
space-group determination. 
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